Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (3)

2020 (3)

Listing 1 - 6 of 6
Sort by

Book
Wireless Power/Data Transfer, Energy Harvesting System Design
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on emerging wireless power/data and energy harvesting technologies, and highlights their fundamental requirements, followed by recent advancements. It provides a various technical overview and analysis of key techniques for wireless power/data and energy harvesting system design. The state-of-the-art system introduced in this book will benefit designers looking to develop wireless power transfer and energy harvesting technologies in a variety of fields, such as wearable, implantable devices, home appliances, and electric vehicles.

Keywords

Technology: general issues --- Energy industries & utilities --- wireless power transfer --- capacitive power transfer --- parallel-plate contactless power --- MIMO --- NOMA --- precoding --- power allocation --- user-clustering --- power splitter --- mobile sensor --- hopping sensor --- relocation protocol --- energy efficient protocol --- internet of things (IoTs) --- wireless sensor networks (WSNs) --- simulation --- inductive power --- dual impedance --- dual band --- reflected resistance --- frequency splitting --- multiple coils --- mutual inductance --- parasitic effect --- practical mutual inductance --- transfer impedance --- wearable heater --- inductive-power transmission --- textile coil --- impedance matching network --- parasitic resistance --- power loss --- reflection coefficient --- Smith chart --- cylindrical joint --- electromagnetic fields --- rotation-free structure --- soil sensing --- decision agriculture --- smart farming --- Wireless Power Transfer (WPT) --- compensation topology --- optimal load --- output power level --- electric vehicle (EV) --- capacitive power transfer (CPT) systems --- wireless power transfer (WPT) systems --- e-class inverter --- wireless resonance energy link system --- cognitive radio --- energy harvesting --- full-duplex relay --- simultaneous wireless information and power transfer (SWIPT) --- zero-forcing precoding --- shielded loop coil --- SAR --- coupled resonance --- coil resistance --- substrate size --- implantable biomedical microsystems --- data telemetry --- low power --- high data rate --- binary phase-shift keying demodulation --- electric vehicle --- center alignment point --- ferrite antenna --- laser wireless power transmission --- PV module --- maximum power point --- battery charging --- wirelessly-powered cage --- inductive power transmission --- implantable medical device --- animal experiment --- reference circuit --- inductive link --- implantable device --- line regulation --- wireless power telemetry --- supply independence --- balanced coil --- foreign object detection --- Maxwell bridge --- metal object detection --- wireless power transmission (WPT) --- power conversion efficiency (PCE) --- mm-sized implant --- duty cycle --- pulsed power transmission --- power transfer efficiency (PTE) --- rectifier


Book
Wireless Power/Data Transfer, Energy Harvesting System Design
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on emerging wireless power/data and energy harvesting technologies, and highlights their fundamental requirements, followed by recent advancements. It provides a various technical overview and analysis of key techniques for wireless power/data and energy harvesting system design. The state-of-the-art system introduced in this book will benefit designers looking to develop wireless power transfer and energy harvesting technologies in a variety of fields, such as wearable, implantable devices, home appliances, and electric vehicles.

Keywords

Technology: general issues --- Energy industries & utilities --- wireless power transfer --- capacitive power transfer --- parallel-plate contactless power --- MIMO --- NOMA --- precoding --- power allocation --- user-clustering --- power splitter --- mobile sensor --- hopping sensor --- relocation protocol --- energy efficient protocol --- internet of things (IoTs) --- wireless sensor networks (WSNs) --- simulation --- inductive power --- dual impedance --- dual band --- reflected resistance --- frequency splitting --- multiple coils --- mutual inductance --- parasitic effect --- practical mutual inductance --- transfer impedance --- wearable heater --- inductive-power transmission --- textile coil --- impedance matching network --- parasitic resistance --- power loss --- reflection coefficient --- Smith chart --- cylindrical joint --- electromagnetic fields --- rotation-free structure --- soil sensing --- decision agriculture --- smart farming --- Wireless Power Transfer (WPT) --- compensation topology --- optimal load --- output power level --- electric vehicle (EV) --- capacitive power transfer (CPT) systems --- wireless power transfer (WPT) systems --- e-class inverter --- wireless resonance energy link system --- cognitive radio --- energy harvesting --- full-duplex relay --- simultaneous wireless information and power transfer (SWIPT) --- zero-forcing precoding --- shielded loop coil --- SAR --- coupled resonance --- coil resistance --- substrate size --- implantable biomedical microsystems --- data telemetry --- low power --- high data rate --- binary phase-shift keying demodulation --- electric vehicle --- center alignment point --- ferrite antenna --- laser wireless power transmission --- PV module --- maximum power point --- battery charging --- wirelessly-powered cage --- inductive power transmission --- implantable medical device --- animal experiment --- reference circuit --- inductive link --- implantable device --- line regulation --- wireless power telemetry --- supply independence --- balanced coil --- foreign object detection --- Maxwell bridge --- metal object detection --- wireless power transmission (WPT) --- power conversion efficiency (PCE) --- mm-sized implant --- duty cycle --- pulsed power transmission --- power transfer efficiency (PTE) --- rectifier


Book
Wireless Power/Data Transfer, Energy Harvesting System Design
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on emerging wireless power/data and energy harvesting technologies, and highlights their fundamental requirements, followed by recent advancements. It provides a various technical overview and analysis of key techniques for wireless power/data and energy harvesting system design. The state-of-the-art system introduced in this book will benefit designers looking to develop wireless power transfer and energy harvesting technologies in a variety of fields, such as wearable, implantable devices, home appliances, and electric vehicles.

Keywords

wireless power transfer --- capacitive power transfer --- parallel-plate contactless power --- MIMO --- NOMA --- precoding --- power allocation --- user-clustering --- power splitter --- mobile sensor --- hopping sensor --- relocation protocol --- energy efficient protocol --- internet of things (IoTs) --- wireless sensor networks (WSNs) --- simulation --- inductive power --- dual impedance --- dual band --- reflected resistance --- frequency splitting --- multiple coils --- mutual inductance --- parasitic effect --- practical mutual inductance --- transfer impedance --- wearable heater --- inductive-power transmission --- textile coil --- impedance matching network --- parasitic resistance --- power loss --- reflection coefficient --- Smith chart --- cylindrical joint --- electromagnetic fields --- rotation-free structure --- soil sensing --- decision agriculture --- smart farming --- Wireless Power Transfer (WPT) --- compensation topology --- optimal load --- output power level --- electric vehicle (EV) --- capacitive power transfer (CPT) systems --- wireless power transfer (WPT) systems --- e-class inverter --- wireless resonance energy link system --- cognitive radio --- energy harvesting --- full-duplex relay --- simultaneous wireless information and power transfer (SWIPT) --- zero-forcing precoding --- shielded loop coil --- SAR --- coupled resonance --- coil resistance --- substrate size --- implantable biomedical microsystems --- data telemetry --- low power --- high data rate --- binary phase-shift keying demodulation --- electric vehicle --- center alignment point --- ferrite antenna --- laser wireless power transmission --- PV module --- maximum power point --- battery charging --- wirelessly-powered cage --- inductive power transmission --- implantable medical device --- animal experiment --- reference circuit --- inductive link --- implantable device --- line regulation --- wireless power telemetry --- supply independence --- balanced coil --- foreign object detection --- Maxwell bridge --- metal object detection --- wireless power transmission (WPT) --- power conversion efficiency (PCE) --- mm-sized implant --- duty cycle --- pulsed power transmission --- power transfer efficiency (PTE) --- rectifier


Book
Massive MIMO Systems
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Multiple-input, multiple-output (MIMO), which transmits multiple data streams via multiple antenna elements, is one of the most attractive technologies in the wireless communication field. Its extension, called ‘massive MIMO’ or ‘large-scale MIMO’, in which base station has over one hundred of the antenna elements, is now seen as a promising candidate to realize 5G and beyond, as well as 6G mobile communications. It has been the first decade since its fundamental concept emerged. This Special Issue consists of 19 papers and each of them focuses on a popular topic related to massive MIMO systems, e.g. analog/digital hybrid signal processing, antenna fabrication, and machine learning incorporation. These achievements could boost its realization and deepen the academic and industrial knowledge of this field.

Keywords

History of engineering & technology --- Energy industries & utilities --- distributed massive MIMO --- phase noise --- amplified thermal noise --- spectral efficiency --- 5G --- massive MIMO --- computational efficiency --- precoding algorithms --- channel estimation --- far-field --- antenna array --- diagnosis procedure --- noisy data --- BCS --- millimeter-wave --- energy efficiency --- pilot contamination --- quantization noise --- massive multi-input multi-output (MIMO) --- distributed antenna systems (DAS) --- sounding reference signal (SRS) --- Massive MIMO --- pilot decontamination --- MSE --- dynamic user scheduling --- dynamic pilot allocation --- beamforming --- line-of-sight --- Ricean fading --- frequency-selective --- power scaling --- hybrid beamforming --- HetNets --- mmWaves --- analog multi-beam --- hybrid beam-forming --- PHY layer --- MAC layer --- pilot assignment --- large-scale fading coefficients --- Bayesian inference --- overcomplete dictionary --- diamond-ring slot --- dual-polarized antenna --- mobile-phone antenna --- pattern diversity --- Metamaterials (MTM) --- leaky-wave antenna (LWA) --- antenna arrays --- substrate integrated waveguide (SIW) --- transverse slots --- beam-scanning --- mutual coupling isolation --- millimetre-wave --- composite right/left-handed transmission line (CRLH-TL) --- 5G wireless networks --- non-coherent detection --- QAM --- multi-user MIMO --- space division multiple access (SDMA) --- block diagonalization (BD) --- non-orthogonal multiple access (NOMA) --- broadcast channel --- discontinuous deception --- multiple beam communications --- artificial intelligence --- wireless communications --- non-orthogonal unicast and multicast transmission --- statistical channel state information --- beam domain --- massive MIMO systems --- MIDE algorithm --- low computational complexity --- BER --- resource allocation --- n/a


Book
Massive MIMO Systems
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Multiple-input, multiple-output (MIMO), which transmits multiple data streams via multiple antenna elements, is one of the most attractive technologies in the wireless communication field. Its extension, called ‘massive MIMO’ or ‘large-scale MIMO’, in which base station has over one hundred of the antenna elements, is now seen as a promising candidate to realize 5G and beyond, as well as 6G mobile communications. It has been the first decade since its fundamental concept emerged. This Special Issue consists of 19 papers and each of them focuses on a popular topic related to massive MIMO systems, e.g. analog/digital hybrid signal processing, antenna fabrication, and machine learning incorporation. These achievements could boost its realization and deepen the academic and industrial knowledge of this field.

Keywords

History of engineering & technology --- Energy industries & utilities --- distributed massive MIMO --- phase noise --- amplified thermal noise --- spectral efficiency --- 5G --- massive MIMO --- computational efficiency --- precoding algorithms --- channel estimation --- far-field --- antenna array --- diagnosis procedure --- noisy data --- BCS --- millimeter-wave --- energy efficiency --- pilot contamination --- quantization noise --- massive multi-input multi-output (MIMO) --- distributed antenna systems (DAS) --- sounding reference signal (SRS) --- Massive MIMO --- pilot decontamination --- MSE --- dynamic user scheduling --- dynamic pilot allocation --- beamforming --- line-of-sight --- Ricean fading --- frequency-selective --- power scaling --- hybrid beamforming --- HetNets --- mmWaves --- analog multi-beam --- hybrid beam-forming --- PHY layer --- MAC layer --- pilot assignment --- large-scale fading coefficients --- Bayesian inference --- overcomplete dictionary --- diamond-ring slot --- dual-polarized antenna --- mobile-phone antenna --- pattern diversity --- Metamaterials (MTM) --- leaky-wave antenna (LWA) --- antenna arrays --- substrate integrated waveguide (SIW) --- transverse slots --- beam-scanning --- mutual coupling isolation --- millimetre-wave --- composite right/left-handed transmission line (CRLH-TL) --- 5G wireless networks --- non-coherent detection --- QAM --- multi-user MIMO --- space division multiple access (SDMA) --- block diagonalization (BD) --- non-orthogonal multiple access (NOMA) --- broadcast channel --- discontinuous deception --- multiple beam communications --- artificial intelligence --- wireless communications --- non-orthogonal unicast and multicast transmission --- statistical channel state information --- beam domain --- massive MIMO systems --- MIDE algorithm --- low computational complexity --- BER --- resource allocation --- n/a


Book
Massive MIMO Systems
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Multiple-input, multiple-output (MIMO), which transmits multiple data streams via multiple antenna elements, is one of the most attractive technologies in the wireless communication field. Its extension, called ‘massive MIMO’ or ‘large-scale MIMO’, in which base station has over one hundred of the antenna elements, is now seen as a promising candidate to realize 5G and beyond, as well as 6G mobile communications. It has been the first decade since its fundamental concept emerged. This Special Issue consists of 19 papers and each of them focuses on a popular topic related to massive MIMO systems, e.g. analog/digital hybrid signal processing, antenna fabrication, and machine learning incorporation. These achievements could boost its realization and deepen the academic and industrial knowledge of this field.

Keywords

distributed massive MIMO --- phase noise --- amplified thermal noise --- spectral efficiency --- 5G --- massive MIMO --- computational efficiency --- precoding algorithms --- channel estimation --- far-field --- antenna array --- diagnosis procedure --- noisy data --- BCS --- millimeter-wave --- energy efficiency --- pilot contamination --- quantization noise --- massive multi-input multi-output (MIMO) --- distributed antenna systems (DAS) --- sounding reference signal (SRS) --- Massive MIMO --- pilot decontamination --- MSE --- dynamic user scheduling --- dynamic pilot allocation --- beamforming --- line-of-sight --- Ricean fading --- frequency-selective --- power scaling --- hybrid beamforming --- HetNets --- mmWaves --- analog multi-beam --- hybrid beam-forming --- PHY layer --- MAC layer --- pilot assignment --- large-scale fading coefficients --- Bayesian inference --- overcomplete dictionary --- diamond-ring slot --- dual-polarized antenna --- mobile-phone antenna --- pattern diversity --- Metamaterials (MTM) --- leaky-wave antenna (LWA) --- antenna arrays --- substrate integrated waveguide (SIW) --- transverse slots --- beam-scanning --- mutual coupling isolation --- millimetre-wave --- composite right/left-handed transmission line (CRLH-TL) --- 5G wireless networks --- non-coherent detection --- QAM --- multi-user MIMO --- space division multiple access (SDMA) --- block diagonalization (BD) --- non-orthogonal multiple access (NOMA) --- broadcast channel --- discontinuous deception --- multiple beam communications --- artificial intelligence --- wireless communications --- non-orthogonal unicast and multicast transmission --- statistical channel state information --- beam domain --- massive MIMO systems --- MIDE algorithm --- low computational complexity --- BER --- resource allocation --- n/a

Listing 1 - 6 of 6
Sort by